FE)

APPENDIX A

OMB Approval Number: 2050-0095 Approved for Use Through: 1/92

PA Scoresheets

Site Name: Buster's Jun Kyard

CERCLIS ID No .: UJA 98 15609 49

Street Address: 1572F Pepper Road

City/State/Zip: Browns Mills, NJ 08015

Investigator: Liam Nobile

Agency/Organization: U.S.E.P.A.

Street Address: 26 Federal Plaza

City/State/Zip: N.Y. N.Y. 10278

Date: Feb, 20, 1992

INSTRUCTIONS FOR SCORESHEETS

Introduction

This scoresheets package functions as a self-contained workbook providing all of the basic tools to apply collected data and calculate a PA score. Note that a computerized scoring tool, "PA-Score," is also available from EPA (Office of Solid Waste and Emergency Response, Directive 9345.1-11). The scoresheets provide space to:

- Record information collected during the PA
- Indicate references to support information
- Select and assign values ("scores") for factors
- Calculate pathway scores
- Calculate the site score.

Do not enter values or scores in shaded areas of the scoresheets. You are encouraged to write notes on the scoresheets and especially on the Criteria Lists. On scoresheets with a reference column, indicate a number corresponding to attached sources of information or pages containing rationale for hypotheses; attach to the scoresheets a numbered list of these references. Evaluate all four pathways. Complete all Criteria Lists, scoresheets, and tables. Show calculations, as appropriate. If scoresheets are photocopy reproduced, copy and submit the numbered pages (right-side pages) only.

GENERAL INFORMATION

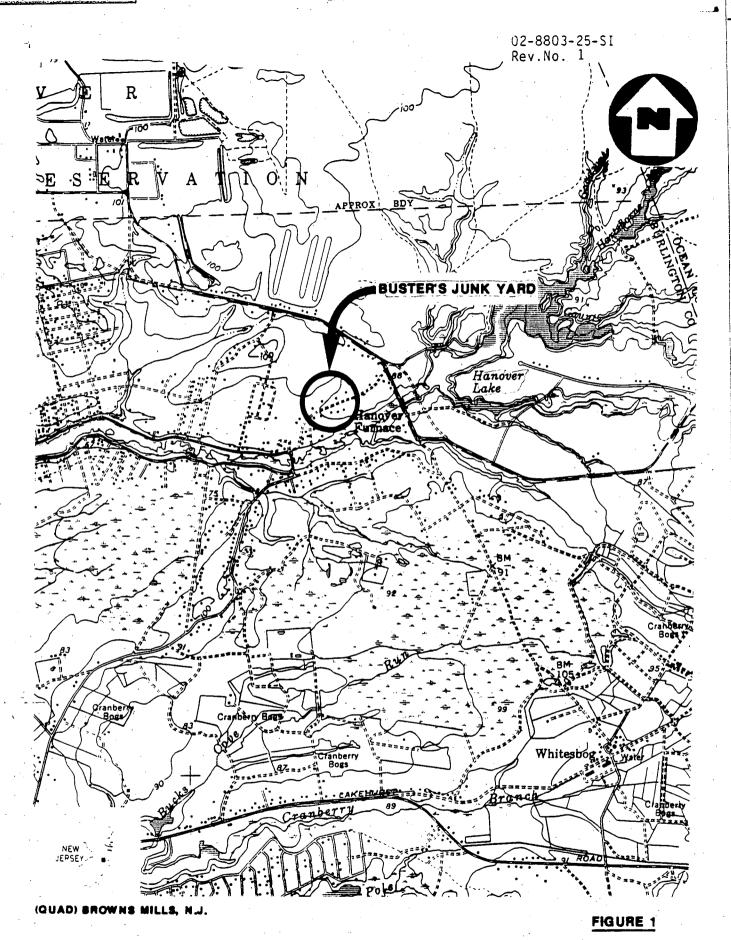
Site Description and Operational History: Briefly describe the site and its operating history. Provide the site name, owner/operator, type of facility and operations, size of property, active or inactive status, and years of waste generation. Summarize waste treatment, storage, or disposal activities that have or may have occurred at the site; note also if these activities are documented or alleged. Identify probable source types and prior spills. Summarize highlights of previous investigations.

Probable Substances of Concern: List hazardous substances that have or may have been stored, handled, or disposed at the site, based on your knowledge of site operations. Identify the sources to which the substances may be related. Summarize any existing analytical data concerning hazardous substances detected onsite, in releases from the site, or at targets.

GENERAL INFORMATION

Site Description and Operational History:

· Fi


Buster's Junkyard is an active 5-acre scrap metal reclaimer located in the New Jersey State Pinelands. The site has been operational since 1970. In 1975, there was a fire on the site as the result of various unknown chemical drums that were disposed of on the site. The drums were reported to have been from the nearby Lang property site which is on the NPC list. An inspection by Burlingtion County Health Department found drums that were buried on-site. In 1983, the site was reportedly landfilling household wastes. Located at the site are three small ponds and amarshy area also there are intermittent streams which lead towards the Rancocas Creek. The Rancocas flows between the Hirror + Hanover Lakes. The lakes are dammed up portions of the North Branch of the Rancocas, it's uses: agriculture, potable, recreational, and wildlife. Nearby residents are adjacent to the junkyards property line. The soil in the area is very permeable and the water table is very high. The underlying aquifers are designated sole-source aquifers.

Probable Substances of Concern: (Previous investigations, analytical data)

- -reported twelve drums observed at site following fire investigation (1975), unknown contents
- contaminated soil from drums and leaking oil and gasoline from junked automobiles: PAHs, heavy metals
- -sampling conducted on site showed high levels of heavy metals as well as a cetone, xylene, methane, and PAHe

GENERAL INFORMATION (continued)

Site Sketch: Prepare a sketch of the site (freehand is acceptable). Indicate all pertinent features of the site and nearby environs, including: waste sources, buildings, residences, access roads, parking areas, drainage patterns, water bodies, vegetation, wells, sensitive environments, etc.

SITE LOCATION MAP
BUSTER'S JUNKYARD, BROWNS MILLS, N.J.

SCALE 1"-2000"

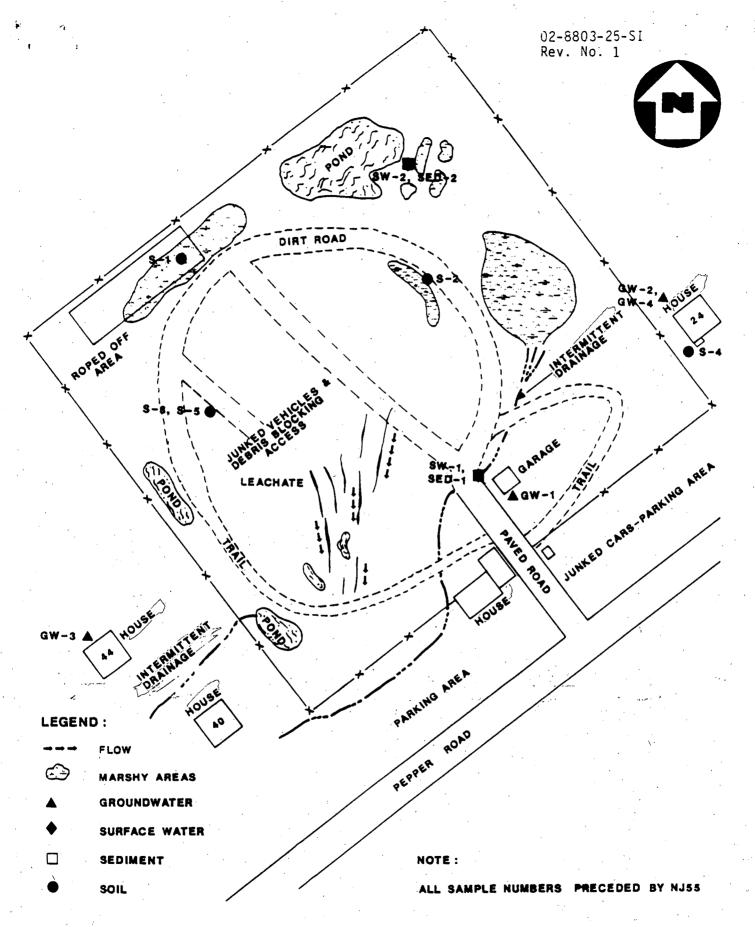


FIGURE 2

SAMPLE LOCATION MAP
BUSTER'S JUNKYARD, BROWNS MILLS, N.J.

GENERAL INFORMATION (continued)

Site Sketch: (Show all pertinent features, indi	cate sources and closest targets, indicate north)	
		1
. • •		
•		•
		• ;
·		
•		
		•
		·
		•
		e e
		•
· · · · ·		
		70 - 10
		:
		* **
		. ,
•		
	•	
	,	

SOURCE EVALUATION

- Number and name each source (e.g., 1. East Drum Storage Area, 2. Sludge Lagoon, 3. Battery Pile).
- Identify source type according to the list below.
- Describe the physical character of each source (e.g., dimensions, contents, waste types, containment, operating history).
- Show waste quantity (WQ) calculations for each source for appropriate tiers. Refer to instructions opposite
 page 5 and PA Tables 1a and 1b. Identify waste quantity tier and waste characteristics (WC) factor category
 score (for a site with a single source, according to PA Table 1a). Determine WC from PA Table 1b for the sum
 of source WQs for a multiple-source site.
- Attach additional sheets if necessary.
- Determine the site WC factor category score and record at the bottom of the page.

Source Type Descriptions

<u>Landfill</u>: an engineered (by excavation or construction) or natural hole in the ground into which wastes have been disposed by backfilling, or by contemporaneous soil deposition with waste disposal, covering wastes from view.

<u>Surface Impoundment</u>: a topographic depression, excavation, or diked area, primarily formed from earthen materials (lined or uniined) and designed to hold accumulated liquid wastes, wastes containing free liquids, or sludges that were not backfilled or otherwise covered during periods of deposition; depression may be dry if deposited liquid has evaporated, volatilized or leached, or wet with exposed liquid; structures that may be more specifically described as lagoon pond, aeration pit, settling pond, tailings pond, sludge pit, etc.; also a surface impoundment that has been covered with soil after the final deposition of waste materials (i.e., buried or backfilled).

Drums: portable containers designed to hold a standard 55-gallon volume of wastes.

<u>Tanks and Non-Drum Containers</u>: any stationary device, designed to contain accumulated wastes, constructed primarily of fabricated materials (such as wood, concrete, steel, or plastic) that provide structural support; any portable or mobile device in which waste is stored or otherwise handled.

Contaminated Soil: soil onto which available evidence indicates that a hazardous substance was spilled, spread, disposed, or deposited.

<u>Pile</u>: any non-containerized accumulation above the ground surface of solid, non-flowing wastes; includes open dumps. Some types of piles are: <u>Chemical Waste Pile</u> -- consists primarily of discarded chemical products, by-products, radioactive wastes, or used or unused feedstocks; <u>Scrap Metal or Junk Pile</u> -- consists primarily of scrap metal or discarded durable goods such as appliances, automobiles, auto parts, or batteries, composed of materials suspected to contain or have contained a hazardous substance; <u>Tailings Pile</u> -- consists primarily of any combination of overburden from a mining operation and tailings from a mineral mining, beneficiation, or processing operation; <u>Trash Pile</u> -- consists primarily of paper, garbage, or discarded non-durable goods which are suspected to contain or have contained a hazardous substance.

Land Treatment: landfarming or other land treatment method of waste management in which liquid wastes or sludges are spread over land and tilled, or liquids are injected at shallow depths into soils.

Other: a source that does not fit any of the descriptions above; examples include contaminated building, ground water plume with no identifiable source, storm drain, dry well, and injection well.

SOURCE EVALUATION

Source No.:	Source Name:	٠	Source Waste Cuantity (WQ) Calculations:
Source Descr	drums with known contents		12 drums = 10 = 1.2
· · · · · · · · · · · · · · · · · · ·			

Source Name: No.: 7 Contaminated Soil	Source Waste Quantity (WQ) Calculations:
Source Description: -junkyard is 5-acres in the area	Sacres = 0.078 = 64.1
in the area	

Source No.:	Source Name:	:	Source Waste Quantity (WQ) Calculations:								
Source Description	on:										
,	•										
			·								

 $= \frac{1.7}{65.3}$ $= \frac{1.7}{65.3}$ Site WC:

WASTE CHARACTERISTICS (WC) SCORES

WC, based on waste quantity, may be determined by one or all of four measures called "tiers": constituent quantity, wastestream quantity, source volume, and source area. PA Table 1a (page 5) is divided into these four tiers. The amount and detail of information available determine which tier(s) to use for each source. For each source, evaluate waste quantity by as many of the tiers as you have information to support, and select the result that gives you the highest WC score. If minimal, incomplete, or no information is available regarding waste quantity, assign a WC score of 18 (minimum).

PA Table 1a has 6 columns: column 1 indicates the quantity tier; column 2 lists source types for the four tiers; columns 3, 4, and 5 provide ranges of waste amount for <u>sites with only one source</u>, which correspond to WC scores at the top of the columns (18, 32, or 100); column 6 provides formulas to obtain source waste quantity (WQ) values at <u>sites with multiple sources</u>.

To determine WC for sites with only one source:

- Identify source type (see descriptions opposite page 4).
- Examine all waste quantity data available.
- Estimate the mass and/or dimensions of the source.
- 4. Determine which quantity tiers to use based on available source information.
- Convert source measurements to appropriate units for each tier you can evaluate for the source.
- 6. Identify the range into which the total quantity falls for each tier evaluated (PA Table 1a).
- 7. Determine the highest WC score obtained for any tier (18, 32, or 100, at top of PA Table 1a columns 3, 4, and 5, respectively).
- 8. Use this WC score for all pathways. *

To determine WC for sites with multiple sources:

- 1. Identify each source type (see descriptions opposite page 4).
- 2. Examine all waste quantity data available for each source.
- 3. Estimate the mass and/or dimensions of each source.
- 4. Determine which quantity tiers to use for each source based on the available information.
- 5. Convert source measurements to appropriate units for each tier you can evaluate for each source.
- For each source, use the formulas in column 6 of PA Table 1a to determine the WQ value for each tier that can be evaluated. The highest WQ value obtained for any tier is the WQ value for the source.
- 7. Sum the WQ values for all sources to get the site WQ total.
- 8. Use the site WQ total from step 7 to assign the WC score from PA Table 1b.
- 9. Use this WC score for all pathways. *

The WC score is considered in all four pathways. However, if a primary target is identified for the ground water, surface water, or air migration pathway, assign the determined WC or a score of 32, whichever is greater, as the WC score for that pathway.

PA TABLE 1: WASTE CHARACTERISTICS (WC) SCORES

PA Table 1a: WC Scores for Single Source Sites and Formulas for Multiple Source Sites

-		SINGLE	SOURCE SITES (assigned WC	scores)	MULTIPLE SOURCE SITES
ER	SOURCE TYPE	WC = 18	WC = 32	WC = 100	Formula for Assigning Source WQ Values
	N/A	≤100 lb	> 100 to 10,000 lb	> 10,000 fb	/b + 1
WAST-ESTREAM	N/A	≤ 500.000 lb	> 500,000 to 50 million lb	>50 million lb	/b + 5,000
	Landfill	≤8.75 million ft ³ ≤250,000 yd ³	>6.75 million to 675 million ft ³ >250,000 to 25 million yd ³	>675 million ft ³ >25 million ya ²	ft + 67,500 ya + 2,500
	Surface impoundment	≤6,750 ft³ ≤250 yd³	> 6,750 to 675,000 ft ² > 250 to 25,000 yd ²	> 675,000 ft ² > 25,000 yd ²	$ft^3 + 67.5$ $ya^3 + 2.5$
×	Drums	1,000 drums	>1,000 to 100,000 drums	> 100,000 drums	drums + 10
0 L	Tanks and non-	≤50,000 gailons	>50,000 to 5 million gallons	>5 million gallons	gallons + 500
U M E	Contaminated soil	≤6.75 million ft ² ≤250,000 yd ²	>6.75 million to 675 million ft ² >250,000 to 25 million yd ³	>675 million ft ³ >25 million yd ³	ft ² + 67,500 ya ² + 2,500
	Pile	≤8,750 ft³ ≤250 yd³	> 6.750 to 675,000 ft ² > 250 to 25,000 ya ²	> 675,000 ft ³ > 25,000 yd ³	$ft^2 + 67.5$ $yo^2 + 2.5$
	Other	≤6,750 ft² ≤250 yd²	>6,750 to 675,000 ft ² > 250 to 25,000 ye ²	>675,000 ft ³ >25,000 yd ²	$ft^3 + 67.5$ $yd^3 + 2.5$
<	Landfill	≤340,000 ft² ≤7.8 ecres	> 340,000 to 34 million ft ² > 7.8 to 780 ecrés	>34 million ft ² >780 scres	$\frac{tt^2 + 3,400}{acres + 0.078}$
	Surface impoundment	≤1,300 ft ² ≤0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 scres	>130,000 ft ² >2.9 scress	ft ² + 13 acres + 0.00029
R	Contaminated soil	≤3.4 million ft² ≤78 acres	>3.4 million to 340 million ft ³ >78 to 7,800 acres	>340 million ft ² >7,800 scree	ft ² + 34,000 acres + 0.78
A	Pile *	≤1,300 ft² ≤0.029 acres	>1:300 to 130,000 ft ² >0.029 to 2.9 scres	> 130,000 ft ² > 2,9 sares	ft ² + 13 acres + 0.00029
	Land treatment	≤27,000 ft ² ≤0.82 acres	> 27,000 to 2.7 million ft ² > 0.62 to 62 acres	>2.7 million ft ² >62 scree	ft ² + 270 acres + 0.0062

¹ ton = 2,000 lb = 1 vd² = 4 drums = 200 gallom

PA Table 1b: WC Scores for Multiple Source Sites

WQ Total	WC Score
>0 to 100	(18)
>100 to 10,000 .	32
>10,000	100

Use area of land surface under pile, not surface area of pile

GROUND WATER PATHWAY

Ground Water Use Description: Provide information on ground water use in the vicinity. Present the general stratigraphy, aquifers used, and distribution of private and municipal wells.

Calculations for Drinking Water Populations Served by Ground Water: Provide populations from private wells and municipal supply systems in each distance category. Show apportionment calculations for blended supply systems.

GROUND WATER PATHWAY GROUND WATER USE DESCRIPTION

Describe Ground Water Use Within 4-miles of the Site: (Describe stratigraphy, information on aquifers, municipal and/or private wells)

- site overlies a sole-source aguifer and the ground is very permeable

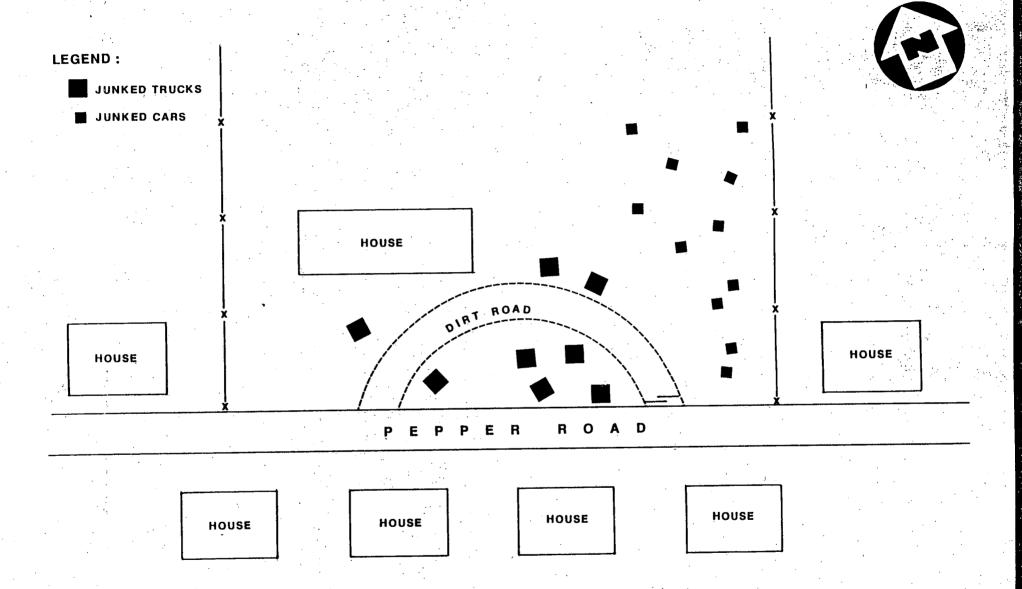
-watertable is very high

- residents w/in 4 miles are served by either public or private wells
- gw flows to the southwest and is discharged to the Rancocas Creek

Calculations for Drinking Water Populations Served by Ground Water:

- primary turgets: seven house either adjacent or on -site 7 x 38 = 26.6 227 people
- = secondary targets. pop. w/in 0-4 miles (excluding primary targets.)

0-14:99-27(primary) = 72


1-1: 706

1 -1: 329

2 1-2: 3/95

2-3: 8,176

3-4:5,643

SITE MAP
BUSTER'S JUNKYARD, BROWNS MILLS, N.J.
(NOT TO SCALE)

GROUND WATER PATHWAY CRITERIA LIST

This "Criteria List" helps guide the process of developing hypotheses concerning the occurrence of a suspected release and the exposure of specific targets to a hazardous substance. The check-boxes record your professional judgment in evaluating these factors. Answers to all of the listed questions may not be available during the PA. Also, the list is not all-inclusive; if other criteria help shape your hypotheses, list them at the bottom of the page or attach an additional page.

The "Suspected Release" section identifies several site, source, and pathway conditions that could provide insight as to whether a release from the site is likely to have occurred. If a release is suspected, use the "Primary Targets" section to evaluate conditions that may help identify targets likely to be exposed to a hazardous substance. Record responses for the well that you feel has the highest probability of being exposed to a hazardous substance. You may use this section of the chart more than once, depending on the number of targets you feel may be considered "primary."

Check the boxes to indicate a "yes," "no," or "unknown" answer to each question. If you check the "Suspected Release" box as "yes," make sure you assign a Likelihood of Release value of 550 for the pathway.

GROUND WATER PATHWAY'SCORESHEET

Pathway Characteristics

Answer the questions at the top of the page. Refer to the Ground Water-Pathway Criteria List (page 7) to hypothesize whether you suspect that a hazardous substance associated with the site has been released to ground water. Record depth to aquifer (in feet): the difference between the deepest occurrence of a hazardous substance and the depth of the top of the shallowest aquifer at (or as near as possible) to the site. Note whether the site is in karst terrain (characterized by abrupt ridges, sink holes, caverns, springs, disappearing streams). Record the distance (in feet) from any source to the nearest well used for drinking water.

Likelihood of Release (LR)

- 1. Suspected Release: Hypothesize based on professional judgment guided by the Ground Water Pathway Criteria List (page 7). If you suspect a release to ground water, use only Column A for this pathway and do not evaluate factor 2.
- 2. No Suspected Release: If you do not suspect a release, determine score based on depth to aquifer or whether the site is in an area of karst terrain. If you do not suspect a release to ground water, use only Column B to score this pathway.

Targets (T)

This factor category evaluates the threat to populations obtaining drinking water from ground water. To apportion populations served by blended drinking water supply systems, determine the percentage of population served by each well based on its production.

- 3. Primary Target Population: Evaluate populations served by all drinking water wells that you suspect have been exposed to a hazardous substance released from the site. Use professional judgment guided by the Ground Water Pathway Criteria List (page 7) to make this determination. In the space provided, enter the population served by any wells you suspect have been exposed to a hazardous substance from the site. If only the number of residences is known, use the average county residents per household (rounded up to the next integer) to determine population served. Multiply the population by 10 to determine the Primary Target Population score. Note that if you do not suspect a release, there can be no primary target population.
- 4. Secondary Target Population: Evaluate populations served by all drinking water wells within 4 miles that you do not suspect have been exposed to a hazardous substance. Use PA Table 2a or 2b (for wells drawing from non-karst and karst aquifers, respectfully) (page 9). If only the number of residences is known, use the average county residents per household (rounded to the nearest integer) to determine population served. Circle the assigned value for the population in each distance category and enter it in the column on the far-right side of the table. Sum the far-right column and enter the total as the Secondary Target Population factor score.
- 5. Nearest Well represents the threat posed to the drinking water well that is most likely to be exposed to a hazardous substance. If you have identified a primary target population, enter 50. Otherwise, assign the score from PA Table 2a or 2b for the closest distance category with a drinking water well population.
- 6. Wellhead Protection Area (WHPA): WHPAs are special areas designated by States for protection under Section 1428 of the Safe Drinking Water Act. Local/State and EPA Regional water officials can provide information regarding the location of WHPAs.
- 7. Resources: A score of 5 can generally be assigned as a default measure. Assign zero only if ground water within 4 miles has no resource use.

Sum the target scores in Column A (Suspected Release) or Column 8 (No Suspected Release).

Waste Characteristics (WC)

8. Waste Characteristics: Score is assigned from page 4. However, if you have identified any primary target for ground water, assign either the score calculated on page 4 or a score of 32, whichever is greater.

Ground Water Pathway Score: Multiply the scores for LR, T, and WC. Divide the product by 82,500. Round the result to the nearest integer. If the result is greater than 100, assign 100.

CROUND WATER PATHWAY SCORESHEET

Pathway Characteristics		X No	
Do you suspect a release (see Ground Water Pathway Criteria List, page 7)?	Yes _	× 100 ×	
Is the site located in karst terrain?	Yes _	-28-	
	•	-	
Depth to aquifer: Distance to the hearest grinking water well:			
Distance to the hearest diseases.	А	3	
		No Suspected	
	Release	Rainesa	References
LIKELIHOOD OF RELEASE	;540		
LIKELIHOOD			
SUSPECTED RELEASE: If you suspect a release to ground water (see page 7).	550		
assign a score of 550. Use only column A for this patients,	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	(POD = 7mg)	
2. NO SUSPECTED RELEASE: If you do not suspect a release to ground water, and			
2. NO SUSPECTED RELEASE: If you do not suspect a release or less, assign a score			
2. NO SUSPECTED RELEASE: If you do not adapted is 70 feet or less, assign a score the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a score the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a score			l
of 500; otherwise, assign a score of 340. Use only column B for this pathway.	Mark Street Street Street		
LR =	550	+	,
LR = [ŀ
			i
TARGETS	ļ		
3. PRIMARY TARGET POPULATION: Determine the number of people served by			
The area work existent bave been caposed to a			
drinking water wells that you subject have both way Criteria List, page 7). substance from the site (see Ground Water Pathway Criteria List, page 7). 2.7. people x 10 = 1	270		
substance from the site (see Ground Water Pathway Criteria List, page 7). 21 people x 10 =		<u>(4)</u>	
4. SECONDARY TARGET POPULATION: Determine the number of people served by			
	<i>-</i> 0		ļ
Are any wells part of a blended system? Yes No X	258		
Are any wells part of a blanded distance of the state of		(20.10.0.6.3.2 = 0)	
If yes, attach a page to show apportunities	180.20.18.8.6.3.2 = 0	,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
5. NEAREST WELL: If you have identified a primary target population for ground	- ^		
	50		
water, assign a score of 50; otherwise, assign to be seried a score of zero. PA Table 2. If no drinking water wells exist within 4 miles, assign a score of zero.	120. 5 01	120. L = 0	1
PA Table 2. If no drinking water value and		ł	
6. WELLHEAD PROTECTION AREA (WHPA): If any source lies within or above a WHPA, source lies within a score of 20;	20		
6. WELLHEAD PROTECTION AREA (WHPAI: 1 ally souther a WHPA, assign a score of 20; or if you have identified any primary target well within a WHPA, assign a score of 20; or if you have identified any primary target well within 4 miles; otherwise	20	٠.	
or if you have identified any primary target well within 4 miles; otherwise assign 5 if neither condition holds but a WHPA is present within 4 miles; otherwise		16 = Q	
assign an iteratical contains.	N-0	1000	
assign zero.	5	1	
7. RESOURCES			┥
7. 1100	603		
Ţ =	600	<u> </u>	
WASTE CHARACTERISTICS	(100 = 32)		
8. A. If you have identified any primary target for ground water, assign the waste	22-		·
8. A. If you have identified any primary target to grant of 32, whichever is characteristics score calculated on page 4, or a score of 32, whichever is	32	E -	
GREATER; do not evaluate part B of this factor.	1100.22 100	(100,32, # 10)	
GREATER; do not evaluate part of			.1
B. If you have NOT identified any primary target for ground water, assign the			
waste characteristics score calculated on page 4.			┥
	20		
WC =	32		_
	(subject to a	meximum of 1001	
LR x T x WC	(128.60	1)	
	1	•	
GROUND WATER PATHWAT SCOTE: 82.500	100)	
	100		 .

PA TABLE 2: VALUES FOR SECONDARY GROUND WATER TARGET POPULATIONS

PA Table 2a: Non-Kerst Aquifers

·		Nearest			Рори	lation Sar	vad by W	ells Withl	n Distance	Category	<u> </u>		
		Well	1	11	31	101	301	1,001	3,001	10,001	30,001	Overter	
Distance		(choose	10	to	to	10	10	10	to	. 10	to	then	Population
from Site	Population	Nghost)	10	30	100	300	1,000	3,000	10,000	30,000	100,000	100,000	Valuo
O to X mile	72	20		2,	(5)	18	52	163	521	1,633	6,214	16,325	5
> % to % mile	706	18	1	1	3	- 10	32	101	323	1,012	3,233	10,121	3 2·
> % to 1 mile	329	9	1	1	2	6	1	52	167	522	1,668	5,224	.1.7
> 1 to 2 miles	3,195	, 6,	1	3	1	3	9	29	94	294	939	2,930	94
> 2 to 3 miles	8,176	3	1	1	1 2	. 2	7	21	68	212	678	2,122	68
> 3 to 4 miles	5,643	2	1	1	1	1	4	13	42)	131	417	1,306	42
,	Nearest Well =			:							•	Score =	258

PA Table 2b: Karst Aquifers

		Noarost			Рори	lation Sur	vad by W	alls Withli	n Distance	Categor	′		,
		Well	1	11	31	101	301	1.001	3,001	10,001	30,001	Greater	
Distance		luse 20	to	to	to	10	10	to	to	10	10	than	Population
from Situ	Population	for karst)	10	30	100	300	1,000	3,000	10,000	30,000	100,000	100,000	Value
O to X milá		20	1	2	. 6	16	52	163	521	1,633	5,214	16,325	
> K to B mile	·	20	1	1	3	10	32	101	323	1,012	3,233	10,121	
> % to 1 mile		20	. 1	1	з.	8	26 ~	. 82	261	816	2,607	0,162	
> 1 to 2 miles		20	1	.1	3 .	B	26	82	261	818	2,607	8,182	
> 2 to 3 milas		20	1	1	3	a	26	02	261	816	2,607	8,162	
>3 to 4 miles		20	1	1	3	0	26	82	261	816	2,607	8,162	
Ne	earost Well =						•				,	Score =	

SURFACE WATER PATHWAY

Migration Route Sketch: Sketch the surface water migration pathway (freehand is acceptable) illustrating the drainage route and identifying water bodies, probable point of entry, flows, and targets.

SURFACE WATER PATHWAY MIGRATION ROUTE SKETCH

Suface Water Migration Route Sketch:

(include runoff route, probable point of entry, 15-mile target distance limit, intakes, fisheries, and sensitive environments)

- intermittent streams on site flow to Rancocas Creek which flows between Hanover Lake and Mirror Lake
- these lakes are dammed-up portions of the North Branch of the Rancocas and sused for agricultural, potable, recreational, and wildlife purposes
- no drinking water intakes von the stream or either of the lakes

SURFACE WATER PATHWAY CRITERIA LIST

This "Criteria List" helps guide the process of developing hypotheses concerning the occurrence of a suspected release and the exposure of specific targets to a hazardous substance. The check-ocxes record your professional judgment in evaluating these factors. Answers to all of the listed questions may not be available during the PA. Also, the list is not all-inclusive; if other criteria help shape your hypotheses, list them at the bottom of the page or attach an additional page.

The "Suspected Release" section identifies several site, source, and pathway conditions that could provide insight as to whether a release from the site is likely to have occurred. If a release is suspected, use the "Primary Targets" section to guide you through evaluation of some conditions that may help identify targets likely to be exposed to a hazardous substance. Record responses for the target that you feel has the highest probability of being exposed to a hazardous substance. You may use this section of the chart more than once, depending on the number of targets you feel may be considered "primary."

Check the boxes to indicate a "yes," "no," or "unknown" answer to each question. If you check the "Suspected Release" box as "yes," make sure you assign a Likelihood of Release value of 550 for the pathway.

If the distance to surface water is greater than 2 miles, do not evaluate the surface water migration pathway. Document the source of information in the text boxes below the surface water criteria list.

SURFACE WATER PAT	HWAY CRITERIA LIST
SUSPECTED RELEASE	PRIMARY TARGETS
Y N U e o n s k	Y N U a o n s k C C Is any target nearby? If yes:
☐ ☐ ▼ Is the drainage area large?	Crinking water intake Fishery Sensitive environment
□ ✓ □ Is rainfall heavy?	□ X □ 'Has any intake, fishery, or recreational area been closed?
☐ ☑ Is the infiltration rate low? ☐ ☑ ☑ Are sources poorly contained or prone to	Oces analytical or circumstantial evidence suggest surface water contamination at or downstream of a target?
runoff or flooding?	Oces any target warrant sampling? If yes: Orinking water intake
off route?	☐ Sensitive environment ☐ Other criteria?
☐ ☑ ☐ Is wildlife unnaturally absent?	PRIMARY INTAKEIS) IDENTIFIED?
Has deposition of waste into surface water been observed?	PRIMARY FISHERY(IES) IDENTIFIED? PRIMARY SENSITIVE ENVIRONMENT(S) IDENTIFIED?
Does analytical or circumstantial evidence suggest surface water contamination?	
Other criteria?	
Summarize the rationale for Suspected Release lattach an additional page if necessary): -on-site Samples from pond and drainage pathway (see site map in gen. info. section) revealed presence of rylene, acetone, Cu, Cv, Fe, Mn, Hg	Summarize the rationale for Primary Targets (attach an additional page if necessary): - on-site sw draincige ditch runs to Rancocas (reeli runs to Rancocas (reeli runs) - fample from drainage ditch showed contaminants

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT SCORESHEET

Pathway Characteristics

The surface water pathway includes three threats: Drinking Water Threat, Human Food Chain Threat, and Environmental Threat. Answer the questions at the top of the page. Refer to the Surface Water Pathway Criteria List (page 11) to hypothesize whether you suspect that a hazardous substance associated with the site has been released to surface water. Record the distance to surface water (the shortest overland drainage distance from a source to a surface water body). Record the flood frequency at the site (e.g., 100-yr, 200-yr). If the site is located in more than one floodplain, use the most frequent flooding event. Identify surface water use(s) along the surface water migration path and their distance(s) from the site.

Likelihood of Release (LR)

- 1. Suspected Release: Hypothesize based on professional judgment guided by the Surface Water Pathway Criteria List (page 11). If you suspect a release to surface water, use only Column A for this pathway and do not evaluate factor 2.
- 2. No Suspected Release: If you do not suspect a release, determine score based on the shortest overland drainage distance from a source to a surface water body. If distance to surface water is 2,500 feet or less, assign a score of 500. If distance to surface water is greater than 2,500 feet, determine score based on flood frequency. If you do not suspect a release to surface water, use only Column B to score this pathway.

Drinking Water Threat Targets (T)

- 3. List all drinking water intakes on downstream surface water bodies along the surface water migration path. Record the intake name, the type of water body on which the intake is located, the flow of the water body, and the number of people served by the intake (apportion the population if part of a blended system).
- 4. Primary Target Population: Evaluate populations served by all drinking water intakes that you suspect have been exposed to a hazardous substance released from the site. Use professional judgment guided by the Surface Water Pathway Criteria List (page 11) to make this determination. In the space provided, enter the population served by all intakes you suspect have been exposed to a hazardous substance from the site. If only the number of residences is known, use the average county residents per household (rounded up to the next integer) to determine population served. Multiply by 10 to determine the Primary Target Population score. Remember, if you do not suspect a release, there can be no primary target population.
- 5. Secondary Target Population: Evaluate populations served by all drinking water intakes within the target distance limit that you do not suspect have been exposed to a hazardous substance. Use PA Table 3 (page 13) and enter the population served by intakes for each flow category. If only the number of residences is known, use the average county residents per household (rounded to the nearest integer) to determine population served. Circle the assigned value for the population in each flow category and enter it in the column on the far-right side of the table. Sum the far-right column and enter the total as the Secondary Target Population factor score.

Gauging station data for many surface water bodies are available from USGS or other sources. In the absence of gauging station data, estimate flow using the list of surface water body types and associated flow categories in PA Table 4 (page 13). The flow for lakes is determined by the sum of flows of streams entering or leaving the lake. Note that the flow category "mixing zone of quiet flowing rivers" is limited to 3 miles from the probable point of entry.

- 6. Nearest Intake represents the threat posed to the drinking water intake that is most likely to be exposed to a hazardous substance. If you have identified a primary target population, enter 50. Otherwise, assign the score from PA Table 3 (page 13) for the lowest-flowing water body on which there is an intake.
- 7. Resources: A score of 5 can generally be assigned as a default measure. Assign zero only if surface water within the target distance limit has no resource use.

Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT SCORESHEET

ŀ			ia ust, bade i ii		Yes	∠ No	 -1
	Do you suspect a release (see Surface Water P Distance to surface water:			_		700	Yrs
	Flood frequency: What is the downstream distance to the neares Nearest fishery? 						

KAO intakes on Rancocas Creek or Hanover+Mirror Lakes

PA TABLE 3: VALUES FOR SECONDARY SURFACE WATER TARGET POPULATIONS

Surface Water]	Nearest	Population Served by Intakes Within Flow Category											
Body Flow (see PA Table 4)	Population	Intake (choose Nghest)	1 to 30	31 10 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 10 30,000	30,001 te 100,000	100,001 to 300,000	300,001 to 1,000,000	Greater than 1,000,000	Population Value
< 10 cfe		20	. 2	6	18	52	163	521	1,633	6,214	18,325	52,138	163,246	
10 to 100 cfs		2	1	1	2	Б	16	52	163	521	1,833	Б,214	18,325	
> 100 to 1,000 cla		1 :	0	0	1	1	2	6	16	52	183	521	1,633	
> 1,000 to 10,000 cfa		٥٠	0	0	o	0	1	1	2	. 5	16	52	183	·
>10,000 cfs or Great Lakes		٥.	. 0	. 0	0	0	o	0	1	1	2	5	16	
3-mile Mixing Zone		10	1	3	8	26	82	261	816	2,607	8,162	28,068	81,663	•
Neare	st Intake =											S	icora =	

PA TABLE 4: SURFACE WATER TYPE / FLOW CHARACTERISTICS WITH DILUTION WEIGHTS FOR SECONDARY SURFACE WATER SENSITIVE ENVIRONMENTS

Type of S	urface W	ater Body	Dutton
Water Body Type	OR	Flow	Weight
minimal stream		< 10 c/s	. 1
small to moderate stream		10 to 100 cfs	0.1
moderate to large atream		> 100 to 1,000 cfs	N/A
large atream to river		> 1,000 to 10,000 cfs	N/A
large river		> 10,000 cfs	N/A
lo enos gnixim elim-E			
quiet flowing streams or rivers		10 cfs or greater	N/A
coastal tidal water (harbors,			
sounds, bays, etc.), ocean,		N/A	N/A
or Great Lakes			14/24

SURFACE WATER PATHWAY HUMAN FOOD CHAIN THREAT SCORESHEET

Likelihood of Release (LR)

LR is the same for all surface water pathway threats. Enter LR score from page 12.

Human Food Chain Threat Targets (T)

8. The only human food chain targets are fisheries. A <u>fishery</u> is an area of a surface water body from which food chain organisms are taken or could be taken for human consumption on a subsistence, sporting, or commercial basis. Food chain organisms include fish, shellfish, crustaceans, amphibians, and amphibious reptiles. Fisheries are delineated by changes in surface water body type (i.e.), streams and rivers, lakes, coastal tidal waters, and oceans/Great Lakes) and whenever the flow characteristics of a stream or river change.

In the space provided, identify all fisheries within the target distance limit. Indicate the surface water body type and flow for each fishery. Gauging station flow data are available for many surface water bodies from USGS or other sources. In the absence of gauging station data, estimate flow using the list of surface water body types and associated flow categories in PA Table 4 (page 13). The flow for lakes is determined by the sum of flows of streams entering or leaving the lake. Note that, if there are no fisheries within the target distance limit, the Human Food Chain Threat Targets score is zero.

- 9. Primary fisheries are any fisheries within the target distance limit that you suspect have been exposed to a hazardous substance released from the site. Use professional judgment guided by the Surface Water Pathway Criteria List (page 11) to make this determination. If you identify any primary fisheries, list them in the space provided, enter 300 as the Primary Fisheries factor score, and do not evaluate Secondary Fisheries. Note that if you do not suspect a release, there can be no primary fisheries.
- 10. Secondary fisheries are fisheries that you do not suspect have been exposed to a hazardous substance. Evaluate this factor only if fisheries are present within the target distance limit, but none is considered a primary fishery.
- A. If you suspect a release to surface water and have identified a secondary fishery but no primary fishery, assign a score of 210.
- B. If you do not suspect a release, evaluate this factor based on flow. In the absence of gauging station flow data, estimate flow using the list of surface water body types and associated flow categories in PA Table 4 (page 13). Assign a Secondary Fisheries score from the table on the scoresheet using the lowest flow at any fishery within the target distance limit. (Dilution weight multiplier does not apply to PA evaluation of this factor.)

Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT SCORESHEET

					^		-
		200			Suspected	No Suspected	
LIKELIHOOD OF RELEA	.SE ,				Referen	Release	Referen
		,		LR =	(SACE	(502,402,333 + 103	
Enter Surface Water Likeliho	od of Release score	from sage 12.		Ln =	550	1	
				· ;		· · · · · · · · · · · · · · · · · · ·	• .
HUMAN FOOD CHAIN	THREAT TARGET	rs					
8. Record the water body	type and flow (if an	plicable) for each fishe	ry within	•			·
the target distance limit	. If there is no fishe	ery within the target		•		e e e	
distance limit, assign a	Targets score of O a	it the bottom of the pa	ige.				
* * *	<u> </u>				y		
Fishery Name		Weter Body Type	Faw				
Rancocas	Creek		62 0	ż			
Hanover			62 c	4	- '		
	. 1/2 📥		62 0				
Mirror	Lake						
, .			c:	s			
·		·	c:	s			
O. SECONDARY FISHERIES A. If you suspect a release but no primary fishery, B. If you do not suspect a	to surface water an assign a score of 21	0.			300 (310)	(79.38 e 13	
below using the lowest				. ,			
·		Secondary Figheries	Same				
< 10	t Flow	210					
		30				<u> </u>	
` <u></u>	100 cfs	30					· .
1	cfs, coastal						
	vaters, oceans.	12	•			·	
or Gre	at Lakes						
					COLTRA	1210_30,12 = 4	
•	•		; .	- -	200		

DELAWARE RIVER BASIN

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ

LOCATION.--Lat 39°58'04", long 74°34'48", Burlington County, Hydrologic Unit 02040202, at bridge on Lakehurst Road at Country Lake.

Country Lake.

DRAINAGE AREA. -- 27.4 mi 2.

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990

	•		- CONCILL	CAIA, WAL	ER TEAK	CIORES 1	989 TO SEF	PTEMBER 19	90		
DATE OCT 1989	TIME	CUBIC FEET PER	ANCE	STAND-	ATURE WATER	XYGEN, DIS- SOLVED (MG/L)	DIS-D SOLVED (PER- CENT SATUR-	BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	in the second of
23	0945 /	£115 \	48	, 7	40.5						•
FEB 1990 07	1215	E 49	•	4.7	12.5	9.9	92	1.5	220	350	
MAR 30		- 1	51	4.9	••	••	••	0.3	2	<2	• ,
MAY	1115	E 42	43	5.6	9.0	12.0	103	••			D A
17 JU <u>L</u>	1015	E 68	39	5.0	17.0	7.4	77	0.9	••		Kancous
30	1340	E. 23	46	• •	27.0	8.2	103	1.4	5		inte
28		E 72	38	4.8	22.0	7.7	88			4	,
	av	g. 62					00	0.6	130	540	Hanovar
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY	SULFATE DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)		Rancoas nuns inte Hanover + Mirror Lakes
OCT 1989 23	8	2.0	0.07								
FEB 1990 07			0.84	2.9	1.0	1.0	8.0	5.5	<0.1		•
MAR 30	10	2.3	0.98	3.5	0.90	1.0	10	6.0	0.1		,
MAY	9	2.2	0.87	3.1	0.80	1.0	9.0	5.8	0.1		
17 JU <u>L</u>	9	2.2	0.90	3.1	1,0	1.6	7.3	4.9	<0.1		
30	9	2.2	0.96	3.4	0.90	3.1	6.4	5.8			
28	7	1.6	0.67	2.4	0.60	1.9			0.3		
						1.7	4.8	4.5	<0.1		
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NÓ3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO-	PHOS- PHORUS TOTAL (MG/L	CARBON, ORGANIC TOTAL (MG/L		
OCT 1989	, ,			÷	-		,	AS P)	AS C)		
FEB 1990	4.1	25	0.007	0.050	0.050	0.36	0.41	0.040	13		
07 Mar	3.9	28	0.007	0.130	<0.050	0.38	0.51	0.050	5.3		a
30 May_	2.6	25	0.007	<0.100	<0.010	0.20	••	<0.010	. ,		
17 JU <u>L</u>	2.7	23	0.006	0.044	0.030	0.40	0.44		5.0		
30 AUG	3.5	25	<0.007	0.150	0.070	0.67	,	0.030	9.7		•
28	4.1	20	0.006	<0.050	<0.050		0.82	0.030	8.1		
	•			.0.030	·U.U.U.	0.05	••	0.050	14		

SURFACE WATER PATHWAY ENVIRONMENTAL THREAT SCORESHEET

Likelihood of Release (LR)

LR is the same for all surface water pathway threats. Enter LR score from page 12.

Environmental Threat Targets (T)

- 11. PA Table 5 (page 16) lists sensitive environments for the Surface Water Pathway Environmental Threat. In the space provided, identify all sensitive environments located within the target distance limit. Indicate the surface water body type and flow at each sensitive environment. Gauging station flow data for many surface water bodies are available from USGS or other sources. In the absence of gauging station data, estimate flow using the list of surface water body types and associated flow categories in PA Table 4 (page 13). The flow for lakes is determined by the sum of flows of streams entering or leaving the lake. Note that if there are no sensitive environments within the target distance limit, the Environmental Threat Targets score is zero.
- 12. Primary sensitive environments are surface water sensitive environments within the target distance limit that you suspect have been exposed to a hazardous substance released from the site. Use professional judgment guided by the Surface Water Pathway Criteria List (page 11) to make this determination. If you identify any primary sensitive environments, list them in the space provided, enter 300 as the Primary Sensitive Environments factor score, and do not evaluate Secondary Sensitive Environments. Note that if you do not suspect a release, there can be no primary sensitive environments.
- 13. Secondary sensitive environments are surface water sensitive environments that you do not suspect have been exposed to a hazardous substance. Evaluate this factor only if surface water sensitive environments are present within the target distance limit, but none is considered a primary sensitive environment. Evaluate secondary sensitive environments based on flow.
 - In the table provided, list all secondary sensitive environments on surface water bodies with flow of 100 cfs or less.
 - 1) Use PA Table 4 (page 13) to determine the appropriate dilution weight for each.
 - 2) Use PA Tables 5 and 6 (page 16) to determine the appropriate value for each sensitive environment type and for wetlands frontage.
 - 3) For a sensitive environment that falls into more than one of the categories in PA Table 5, sum the values for each type to determine the environment value (e.g., a wetland with 1.5 miles frontage (value of 50) that is also a critical habitat for a Federally designated endangered species (value of 100) would receive a total value of 150).
 - 4) For each sensitive environment, multiply the dilution weight by the environment type (or length of wetlands) value and record the product in the far-right column.
 - 5) Sum the values in the far-right column and enter the total as the Secondary Sensitive Environments score. Do not evaluate part 8 of this factor.
 - If all secondary sensitive environments are on surface water bodies with flows greater than 100 cfs, assign 10 as the Secondary Sensitive Environments score.

Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT SCORESHEET

				1		1	
					Suspected	No Surpestor	2-4-
ELIHOOD OF RELI	ASE	·			Rainara :wa-	Reisses :NEL all TED or 1003	30/2
		- 4 0-0- 17	•	ਂ ਪੜ =	550		
r Surface Water Likel	hood of Release score	e from Sage : 1.					
· · · · · · · · · · · · · · · · · · ·							
VIRONMENTAL TH	REAT TARGETS						
	ty type and flow (if at	opticable) for each surfi	ace water				
	consitive environmen	If Addition the torder are	tance			2.3.4.3.5	
limit assign a Targe	s score of 0 at the bo	ottom of the page.					
		Water Body Type	Fow				,
Environment Name				ts			
			- 	ts :			
	<i>a</i>			fs			
non	<u> </u>			:5		写真 台灣東	
		<u> </u>		ts.			. :
			<u></u>				_
Surface Water Crite	ia List, page 111, assi nimary sensitive envi	hazardous substance frign a score of 300 and ronments:		•	0		· -
SECONDARY SENS present, but none is Sensitive Environment. A. For secondary sensor 100 cfs or less.	TIVE ENVIRONMENT a primary sensitive environments a primary sensitive en ints based on flow.	idu a senie di con sila	ments are lecondary		0		
Surface Water Criter factor 13. List the sactor 13. List the sacto	TIVE ENVIRONMENT a primary sensitive environment based on flow. ensitive environments assign scores as follo	s: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodi	ments are lecondary es with flows te part B of		0		
Surface Water Criteriactor 13. List the secondary SENS present, but none is Sensitive Environment. For secondary sec	TIVE ENVIRONMENT a primary sensitive environments based on flow. ensitive environments assign scores as follo	S: If sensitive environments: on surface water bodi iws, and do not evaluate.	ments are lecondary es with flows te part B of		0		
Surface Water Criteriactor 13. List the secondary SENS present, but none is Sensitive Environment. For secondary sec	TIVE ENVIRONMENT a primary sensitive environments based on flow. ensitive environments assign scores as follo Obudon Weight (PA Table 4)	S: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodinws, and do not evaluate (PA Tables 5 and 6	ments are lecondary es with flows te part B of	of .	0		
Surface Water Criteriactor 13. List the factor 13. List the SECONDARY SENS present, but none is Sensitive Environment. A. For secondary sand this factor:	TIVE ENVIRONMENT: a primary sensitive environments based on flow. ensitive environments assign scores as follo Obudon Weight (PA Table 4)	S: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodi tws, and do not evaluate [PA Tables 5 and 6]	ments are secondary es with flows to part 8 of	of Total	0		
Surface Water Criteriactor 13. List the factor 13. List the SECONDARY SENS present, but none is Sensitive Environment. A. For secondary so this factor:	TIVE ENVIRONMENT TIVE ENVIRONMENT a primary sensitive entity based on flow. ensitive environments assign scores as follo Obston Weight (PA Table 4)	S: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodi lows, and do not evaluate (PA Tables 5 and 6	ments are secondary es with flows to part 8 of	of Total	0		
Surface Water Criteriactor 13. List the factor 13. List the SECONDARY SENS present, but none is Sensitive Environment. A. For secondary sand this factor:	TIVE ENVIRONMENT a primary sensitive environments based on flow. ensitive environments assign scores as follo Obution Weight (PA Table 4)	S: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodi lws, and do not evaluate [PA Tables 5 and 6]	ments are secondary es with flows to part B of	Of Total	0		
Surface Water Criteriactor 13. List the factor 13. List the SECONDARY SENS present, but none is Sensitive Environment. A. For secondary so this factor:	TIVE ENVIRONMENT a primary sensitive environments based on flow. ensitive environments assign scores as follo Obtation Weight (PA Table 4)	S: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodi tws, and do not evaluate [PA Tobles 5 and 6]	ments are lecondary es with flows te part B of	Tatal	0		
Secondary Sens present, but none is Sensitive Environment. A. For secondary sens this factor:	TIVE ENVIRONMENT a primary sensitive environments based on flow. ensitive environments assign scores as follo Obution Weight (PA Table 4)	S: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodi tws, and do not evaluate [PA Tobles 5 and 6]	ments are lecondary es with flows te part B of	Total	0		
Secondary Sensitive Environmental Sensitive Sens	TIVE ENVIRONMENT a primary sensitive environments based on flow. ensitive environments assign scores as follo Obtation Weight (PA Table 4)	S: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodi tws, and do not evaluate [PA Tobles 5 and 6]	ments are lecondary es with flows te part B of	Total	0	1106	
Secondary Sensitive Environmental Secondary Sensitive Environmental Sensitive Sens	TIVE ENVIRONMENT a primary sensitive environments based on flow. ensitive environments assign scores as follo Obtation Weight (PA Table 4)	S: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodi iws, and do not evaluate [PA Tables 5 and 6]	ments are secondary es with flows re part 8 of	Total		1106	
Surface Water Criteriactor 13. List the factor 13. List the secondary SENS present, but none is Sensitive Environment. A. For secondary	TIVE ENVIRONMENT TIVE ENVIRONMENT a primary sensitive entre based on flow. ensitive environments assign scores as follo Obtain Weight (PA Table 4) x x x x x x x x x x x x x	S: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodi lows, and do not evaluate (PA Tables 5 and 6	ments are secondary es with flows re part 8 of	Total		1100	
Surface Water Criteriactor 13. List the factor 13. List the secondary SENS present, but none is Sensitive Environment. A. For secondary	TIVE ENVIRONMENT a primary sensitive environments based on flow. ensitive environments assign scores as follo Obtation Weight (PA Table 4)	S: If sensitive environments: S: If sensitive environment, evaluate S on surface water bodi lows, and do not evaluate (PA Tables 5 and 6	ments are secondary es with flows re part 8 of	Total		1100	

PA TABLE 5: SURFACE WATER AND AIR PATHWAY SENSITIVE ENVIRONMENTS VALUES

Sensitive Environment	Assian a d	Value
Critical natitat for Federally designated engangered or threatened species	100	
Manne Senetuary		
National Park		
Designated Federal Wilderness Area		
Ecologically important areas identified under the Coastal Zone Wilderness Act		
Sansitive Areas identified under the National Estuary Program or Near Coastal Water Program of the Clean Water	Act	
Critical Areas Identified under the Clean Lakes Program of the Clean Water Act (subareas in lakes or entire small)	akas)	
National Monument (air pathway only)		
National Sessions Recreation Area		•
National Lakesnore Recreation Area		
Habitat known to be used by Federally designated or proposed endangered or threatened species	75	
National Preserve		
National or State Wildlife Refuge		
Unit of Coastal Barner Resources System		
Federal land designated for the protection of natural ecosystems		
Administratively Proposed Federal Wilderness Area		
Spawning areas critical for the maintenance of fish/shellfish species within a river system, bay, or estuary		
Migratory pathways and faeding areas critical for the maintenance of anedromous fish species in a river system		
ferrestrial areas utilized for breeding by large or dense aggregations of vertebrate animals (air pathway) or		
semi-aquatic foragers (surface water pathwey)		
National river reach designated as Recreational		
labitat known to be used by State designated andangered or threatened species	50	
fabitat known to be used by a species under review as to its Federal endangered or threatened status		
Coastal Barrier (partially developed)		
ederally designated Scenic or Wild River		
tate land designated for wildlife or game management	25	
tate designated Scanic or Wild River		
tata designated Natural Area		
articular areas, relatively small in size, important to maintenance of unique biotic communities		
tate designated areas for protection/maintenance of aquatic life under the Clean Water Act	5	
See PA Table 6 (Surface	s Water Path	way)
Vedands or		ļ
PA Table 9 (Air	Pathway)	J

PA TABLE 6: SURFACE WATER PATHWAY WETLANDS FRONTAGE VALUES

Total Length of Wetlands	Assigned Value
Less than 0.1 mile	. 0
O.1 to 1 mile	25
Greater than 1 to 2 miles	50
Greater than 2 to 3 miles	75
Greater than 3 to 4 miles	100.
Greater than 4 to 8 miles	150
Greater than 8 to 12 miles	250
Greater than 12 to 18 miles	350
Greater than 16 to 20 miles	460
Greater than 20 miles	500

SURFACE WATER PATHWAY WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORES

Waste Characteristics (WC)

14. Waste Characteristics: Score is assigned from page 4. However, if a primary target has been identified for any surface water threat, assign either the score calculated on page 4 or a score of 32, whichever is greater.

Surface Water Pathway Threat Scores

Fill in the matrix with the appropriate scores from the previous pages. To calculate the score for each threat: multiply the scores for LR, T, and WC; divide the product by 82,500; and round the result to the nearest integer. The Drinking Water Threat and Human Food Chain Threat are each subject to a maximum of 100. The Environmental Threat is subject to a maximum of 60. Enter the rounded threat scores in the far-right column.

Surface Water Pathway Score

Sum the individual threat scores to determine the Surface Water Pathway Score. If the sum is greater than 100, assign 100.

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

		A	8
		Suspected	No Suspected
WASTE CHARACTERISTICS		Rainess	Rolessa
		[100 = 22]	
14. A. If you have identified any primary target for surfactor 15, assign the waste characteristics score calcordage, whichever is GREATER; do not evaluate participants.	ulated on page 4, or a score	32	
		(100 == ± 15	(100 <u>1.77,</u> = 181
 If you have NOT identified any primary target for si waste characteristics score calculated on page 4. 	urface water, assign the		
	WC ≖	32	

SURFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LR) Score (from page 12)	Targets (T) Score	Pathwey Waste Characteristics (WC) Score (determined above)	Threat Score LR x T x WC / 82,500
Drinking Water	550	5	32	1.07
Human Food Chain	550	300	32	64.00
Environmental	550	0	32	

SURFACE WATER PATHWAY SCORE
(Drinking Water Threat + Human Food Chain Threat + Environmental Threat) 65.07

SOIL EXPOSURE PATHWAY CRITERIA LIST

Areas of surficial contamination can generally be assumed. This "Criteria List" helps guide the process of developing a hypothesis concerning the exposure of specific targets to a hazardous substance at the site. Use the "Resident Population" section to evaluate site and source conditions that may help identify targets likely to be exposed to a hazardous substance. The check-boxes record your professional judgment. Answers to all of the listed questions may not be available during the PA. Also, the list is not all-inclusive; if other criteria help shape your hypothesis, list them at the bottom of the page or attach an additional page.

Check the boxes to indicate a "yes," "no," or "unknown" answer to each question.

SOIL EXPOSURE PAT	HWAY CRITERIA LIST
SUSPECTED CONTAMINATION	RESIDENT POPULATION
	Y N U e o n s k III III III III III III III III III I
Surficial contamination can generally be assumed. *NO SOIL CONTAMINATION	☐ ☐ ☐ Is any residence, school, or daycare facility located on adjacent land previously owned or leased by the site owner/operator? ☐ ☐ ☐ Is there a migration route that might spread hazardous substances near residences,
	schools, or daycare facilities? Have onsite or adjacent residents or students reported adverse health effects, exclusive of apparent drinking water or air contamination problems?
	☐ ☐ Does any neighboring property warrant sampling?
	☐ ☐ Other criteria?
	☐ ☐ RESIDENT POPULATION IDENTIFIED?
* all contaminants detected	were within background

SOIL EXPOSURE PATHWAY SCORESHEET

Pathway Characteristics

Answer the questions at the top of the page. Identify people who may be exposed to a hazardous substance because they work at the facility, or reside or attend school or daycare on or within 200 feet of an area of suspected contamination. If the site is active, estimate the number of full and part-time workers. Note that evaluation of targets is based on current site conditions.

Likelihood of Exposure (LE)

1. Suspected Contamination: Areas of surficial contamination are present at most sites, and a score of 550 can generally be assigned as a default measure. Assign zero, which effectively eliminates the pathway from further consideration, only if there is no surficial contamination; reliable analytical data are generally necessary to make this determination.

Resident Population Threat Targets (T)

- 2. Resident Population corresponds to "primary targets" for the migration pathways. Use professional judgment guided by the Soil Exposure Pathway Criteria List (page 18) to determine if there are people living or attending school or daycare on or within 200 feet of areas of suspected contamination. Record the number of people identified as resident population and multiply by 10 to determine the Resident Population factor score.
- 3. Resident Individual: Assign 50 if you have identified a resident population; otherwise, assign zero.
- 4. Workers: Estimate the number of full and part-time workers at this facility and adjacent facilities where contamination is also suspected. Assign a score for the Workers factor from the table.
- 5. Terrestrial Sensitive Environments: In the table provided, list each terrestrial sensitive environment located on an area of suspected contamination. Use PA Table 7 (page 20) to assign a value for each. Sum the values and assign the total as the factor score.
- 6. Resources: A score of 5 can generally be assigned as a default measure. Assign zero only if there is no land resource use on an area of suspected contamination.

Sum the target scores.

Waste Characteristics (WC)

7. Enter the WC score determined on page 4.

Resident Population Threat Score: Multiply the scores for LE, T, and WC. Divide the product by 82,500. Round the result to the nearest integer. If the result is greater than 100, assign 100.

<u>Nearby Population Threat Score:</u> Do not evaluate this threat if you gave a zero score to Likelihood of Exposure. Otherwise, assign a score based on the population within a 1-mile radius (use the same 1-mile radius population you evaluate for air pathway population targets):

Population Within One Mile	Nearby Population Threat Score
< 10,000	1 >
10,000 to 50,000	2
> 50,000,	4
į ·	

Soil Exposure Pathway Score: Sum the Resident Population Threat score and the Nearby Population Threat score, subject to a maximum of 100.

SOIL EXPOSURE PATHWAY SCORESHEET

•	Pathway Characteristics	· · · · · · · · · · · · · · · · · · ·		•
	Do any people live on or within 200 ft of areas of suspected contamination?	. Yes	No 🔀	
	Do any people attend school or daycare on or within 200 ft of areas			
	of suspected contamination?	Yes	No 🔀	
	Is the facility active? Yes No If yes, estimate the number of workers:	5		
	is the facility active: Tes X No If yes, estimate the resident			
			-	
		Suspected	i	
1 11	CELIHOOD OF EXPOSURE	Contamination	Re/e	nences
		,560 e u	1	
1.	SUSPECTED CONTAMINATION: Surficial contamination can generally be assumed.		·	
	and a score of 550 assigned. Assign zero only if the absence of surficial			
	contamination can be confidently demonstrated.			
<u> </u>			<u></u>	
. 00	SIDENT POPULATION THREAT TARGETS		_	
			1	
2.	RESIDENT POPULATION: Determine the number of people occupying residences			•
	or attending school or daycare on or within 200 feet of areas of suspected	٠,		
	contamination (see Soil Exposure Pathway Criteria List, page 18).			
	people x 10 =	,		
	· · · · · · · · · · · · · · · · · · ·	,2-4	1	
3.	RESIDENT INDIVIDUAL: If you have identified a resident population (factor 2),			
	assign a score of 50; otherwise, assign a score of 0.		·	
		115. 12. 2. 2. 4		
4.	WORKERS: Use the following table to assign a score based on the total number of			
	workers at the facility and nearby facilities with suspected contamination:			
		1		
	Number of Workers Score	/		
	0 0	!		
	1 to 100 5	,		
	101 to 1,000			
	>1,000			
				•
5.	TERRESTRIAL SENSITIVE ENVIRONMENTS: Use PA Table 7 to assign a value			
	for each terrestrial sensitive environment on an area of suspected	1		
	contamination:			
	Terrestrial Sensitive Environment Type Value	-1	•	
		· /		
		' i	•	
	Sum =	(Sign CE		
-	RESOURCES	.)		
٠.	RESOURCES	. 1		
			* *	
	T ■ [· · · · · · · · · · · · · · · · · · ·		
W	ASTE CHARACTERISTICS			
		100, 22, a 101		
-	Assign the waste characteristics score calculated on page 4. WC =	18		
/.	Assign the waste characteristics score calculated on page 4.	19		
	· · · · · · · · · · · · · · · · · · ·			
		1001		
RE:	SIDENT POPULATION THREAT SCORE: LE X T X WC	\wedge		
	82,500			
NE.	ARBY POPULATION THREAT SCORE:	14.2011	•	
		`		
	·			
so	IL EXPOSURE PATHWAY SCORE:	1		
	sident Population Threat + Nearby Population Threat			
	<u></u>		Francisco (Contractor)	

PA TABLE 7: SOIL EXPOSURE PATHWAY TERRESTRIAL SENSITIVE ENVIRONMENT VALUES

Terrestrial Sensitive Environment	Assigned Value
I AFTESTITAL SANSTOVE ENVIRONMENT	100
Terrestrial critical habitat for Federally designated endangered or threatened species	
National Park	
Designated Federal Wilderness Area	
National Monument	7-
Terrestrial habitat known to be used by Federally designated or proposed threatened or endangered species	. 75
National Preserve (terrestrial)	
National or State terrestrial Wildlife Refuge	
Federal land designated for protection of natural ecosystems	
A aministratively proposed Federal Wilderness Area	
Terrestrial areas utilized by large or dense aggregations of animals (vertebrate species) for breeding	
Targettal habitat used by State designated endangered of threatened species	50
Terrestrial habitat used by species under review for Federal designated endangered or threatened status	
Terrestrial habitat used by species under review for rederal designates entanglished	25
State lands designated for wildlife or game management	
State designated Natural Areas	
Particular areas, relatively small in size, important to maintenance of unique biotic communities	

AIR PATHWAY CRITERIA LIST

This "Criteria List" helps guide the process of developing a hypothesis as to whether a release to the air is likely to be detected. The check-boxes record your professional judgment. Answers to all of the listed questions may not be available during the PA. Also, the list is not all-inclusive; if other criteria help shape your hypothesis, list them at the bottom of the page or attach an additional page.

The "Suspected Release" section identifies several conditions that could provide insight as to whether a release from the site is likely to be detected. If a release is suspected, primary targets are any residents, workers, students, and sensitive environments on or within ¼ mile of the site.

Check the boxes to indicate a "yes," "no," or "unknown" answer to each question. If you check the "Suspected Release" box as "yes," make sure you assign a Likelihood of Release value of 550 for the pathway.

AIR PATHWAY	CRITERIA LIST
SUSPECTED RELEASE	PRIMARY TARGETS
Y N U e o n s k □ ★ □ Are odors currently reported?	
Has release of a hazardous substance to the air been directly observed?	If you suspect a release to air, evaluate all populations and sensitive environments within 1/4 mile (including those onsite) as primary targets.
Are there reports of adverse health effects (e.g., headaches, nausea, dizziness) potentially resulting from migration of hazardous substances through the air?	Offsites as printery telegotor
□ ☑ □ Does analytical or circumstantial evidence suggest a release to the air?	
Other criteria?	
□ 点 SUSPECTED RELEASE?	
-no readings above being. photoionization detector - OVA detected & over 10 ground surface where landfilled	ooppm methane beneath garbage was reportedly

AIR PATHWAY SCORESHEET

Pathway Characteristics

Answer the questions at the top of the page. Refer to the Air Pathway Criteria List (page 21) to hypothesize whether you suspect that a hazardous substance release to the air could be detected. Due to dispersion, releases to air are not as persistent as releases to water migration pathways and are much more difficult to detect. Develop your hypothesis concerning the release of hazardous substances to air based on "real time" considerations. Record the distance (in feet) from any source to the nearest regularly occupied building.

Likelihood of Release (LR)

- 1. Suspected Release: Hypothesize based on professional judgment guided by the Air Pathway Criteria List (page 21). If you suspect a release to air, use only Column A for this pathway and do not evaluate factor 2.
- 2. No Suspected Release: If you do not suspect a release, enter 500 and use only Column B for this pathway.

Targets (T)

- 3. Primary Target Population: Evaluate populations subject to exposure from release of a hazardous substance from the site. If you suspect a release, the resident, student, and worker populations on and within 1/2 mile of the site are considered primary target population. If only the number of residences is known, use the average county residents per household (rounded up to the next integer) to determine the population. In the space provided, enter this population. Multiply the population by 10 to determine the Primary Target Population score. Note that if you do not suspect a release, there can be no primary target population.
- 4. Secondary Target Population: Evaluate populations in distance categories not suspected to be subject to exposure from release of a hazardous substance from the site. If you suspect a release, residents, students, and workers in the ¼- to 4-mile distance categories are secondary target population. If you do not suspect a release, all residents, students, and workers onsite and within 4 miles are considered secondary target population.

Use PA Table 8 (page 23). Enter the population in each secondary target population distance category, circle the assigned value, and record it on the far-right side of the table. Sum the far-right column and enter the total as the Secondary Target Population factor score.

- 5. Nearest Individual represents the threat posed to the person most likely to be exposed to a hazardous substance release from the site. If you have identified a primary target population, enter 50. Otherwise, assign the score from PA Table 8 (page 23) for the closest distance category in which you have identified a secondary target population.
- 6. Primary Sensitive Environments: If a release is suspected, all sensitive environments on or within ¼ mile of the site are considered primary targets. List them and assign values for sensitive environment type (from PA Table 5, page 16) and/or wetland acreege (from PA Table 9, page 23). Sum the values and enter the total as the factor score.
- 7. Secondary Sensitive Environments: If a release is suspected, sensitive environments in the ¼- to ½-mile distance category are secondary targets; greater distances need not be evaluated because distance weighting greatly diminishes the impact on site score. If you do not suspect a release, all sensitive environments on and within ½ mile of the site are considered secondary targets. List each secondary sensitive environment on PA Table 10 (page 23) and assign a value to each using PA Tables 5 and 9. Multiply each value by the indicated distance weight and record the product in the farright column. Sum the products and enter the total as the factor score.
- 8. Resources: A score of 5 can generally be assigned as a default measure. Assign zero only if there is no land resource use within ½ mile.

Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

Waste Characteristics (WC)

9. Waste Characteristics: Score is assigned from page 4. However, if you have identified any primary target for the air pathway, assign either the score calculated on page 4 or a score of 32, whichever is greater.

Air Pathway Score: Multiply the scores for LR, T, and WC. Divide the product by 82,500. Round the result to the nearest integer. If the result is greater than 100, assign 100.

AIR PATHWAY SCORESHEET			•
Pathway Characteratics	Yes	No X	
Do you suspect a release (see Air Pathway Criteria List, page 21)? Distance to the nearest individual:		ft	
Distance to the hearest individues.	Α	8	
	Suspected	No Suspected	References
LIKELIHOOD OF RELEASE	Ridente :	COLOR BUSINESS	7,4,1
SUSPECTED RELEASE: If you suspect a release to air (see page 21), assign a score of 550. Use only column A for this pathway.		; kool	·
 NO SUSPECTED RELEASE: If you do not suspect a release to air, assign a score of 500. Use only column 8 for this pathway. 		500	
LR =		500	
		V. 20- 11 , 1887	
TARGETS 3. PRIMARY TARGET POPULATION: Determine the number of people subject to exposure from a suspected release of hazardous substances to the air. people x 10 =			
 SECONDARY TARGET POPULATION: Determine the number of people not suspected to be exposed to a release to air, and assign the total population score using PA Table 3. 	(80.70,7.1.1, ar 0)	120,7,2,1, = 0	
5. NEAREST INDIVIDUAL: If you have identified any Primary Target Population for the air pathway, assign a score of 50; otherwise, assign the Nearest Individual score from PA Table 8.		20	
6. PRIMARY SENSITIVE ENVIRONMENTS: Sum the sensitive environment values (PA Table 5) and wetland acreage values (PA Table 9) for environments subject to exposure from a suspected release to the air. Sensitive Environment Type Value			
NONE Sum =			·
SECONDARY SENSITIVE ENVIRONMENTS: Use PA Table 10 to determine the score for secondary sensitive environments.	16-4	5	
a. RESOURCES)	┨
T =	· 	36	
WASTE CHARACTERISTICS	(100 = 12)		•
9. A. If you have identified any Primary Target for the air pathway, assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part 8 of this factor.	1100,33, # 15	1100.72 + 141	
 If you have NOT identified any Primary Target for the air pathway, assign the waste characteristics score calculated on page 4. 		1.18	<u> </u>
WC =		18	<u>.</u>].
AIR PATHWAY SCORE: LR x T x WC 82,500	3.	92	

PA TABLE 8: VALUES FOR SECONDARY AIR TARGET POPULATIONS

		Nearest		Population Within Distance Category						,					
,		Individual	,	11	31	101	301	1,001	3,001	.10,001	30,001	100,001	300,001	Greater	
Distance		(choose	to	10	to	to	lo	to	to	to	10	to	to	than	Population
from Site	Population	Nghost)	10	30	100	300	1,000	1,000	10,000	30,000	100,000	300,000	1,000,000	1,000,000	Value
Oneite	410	6 0	①	2	5	16	62	163	521	1,633	5,214	-16,326	62,138	163,246	
>0 to K mile	99	20	1	1	(1)	4	13	41	130	408	1,303	4,081	13,034	40,811	
> X to X mile	706	2.	0	0	1	1	3	9	28	88	282	882	2,815	0,016	3
> ½ to 1 mile	327	1	0	0	o	1	(1)	3	8	28	83	281	834	2,812	
> 1 to 2 miles	3,195	0	o	0	0	o	ı	1 .	3	8	27	83	268	833	3
> 2 to 3 miles	8,176	0 1	o	0	o	o	1	1	(1)	4	12	38	120	378	. <u>-</u>
>3 to 4 miles	5,643	o	a	, o	o	0	o ·	1	0	2	7	23	73	229	
Negrest	Individual ==	20								•				Score =	<11

PA TABLE 9: AIR PATHWAY VALUES FOR WETLAND AREA

Wetland Area	Assigned Value
Less than 1 acre	0
1 to 50 acres	25
Greater than 50 to 100 acres	75
Greater than 100 to 150 acres	125
Granter than 150 to 200 acres	176
Greater than 200 to 300 acres	250
Granter than 300 to 400 acres	350
Greater than 400 to 500 acre	450
Grouter than 500 acres	500

PA TABLE 10: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY SECONDARY SENSITIVE ENVIRONMENTS

Distance	Distanca Walght	Sensitive Environment Type and Value (from PA Yable 5 or 9)	. Product
Onsite	0.10	×	
		x	
		×	
0-1/4 mi 0.025	0.025	х .	
		x	
		×	
1/4-1/2mi	0.0054	x :	
		x	
	ļ	×	

Total Environments Score -

SITE SCORE CALCULATION

In the column labeled S, record the Ground Water Pathway score, the Surface Water Pathway score, the Soil Exposure Pathway score, and the Air Pathway score. Square each pathway score and record the Soil Exposure Pathway score, and the Air Pathway score. Divide the sum by 4, and take the the result in the S² column. Sum the squared pathway scores. Divide the sum by 4, and take the square root of the result to obtain the Site Score.

SUMMARY

Answer the summary questions, which ask for a qualitative evaluation of the relative risk of targets being exposed to a hazardous substance from the site. You may find your responses to these questions a good cross-check against the way you scored the individual pathways. For example, if you scored the ground water pathway on the basis of no suspected release and secondary targets you scored the ground water pathway on the basis of no suspected release and secondary targets only, yet your response to question #1 is "yes," this presents apparently conflicting conclusions that you need to reconsider and resolve. Your answers to the questions on page 24 should be consistent with your evaluations elsewhere in the PA scoresheets package.

SITE SCORE CALCULATION

	S	S²
GROUND WATER PATHWAY	100	10,000
SURFACE WATER PATHWAY SCORE (S.,.):	65.07	4,234
SOIL EXPOSURE PATHWAY SCORE (S,):	1.00	1
AIR PATHWAY SCORE (S.):	3.92	15
SITE SCORE:	$\sqrt{\frac{S_{gw^2} + S_{sw^2} + S_{s^2} + S_{a^2}}{4}}$	59.69

SUMMARY YES NO Is there a high possibility of a threat to any nearby drinking water well(s) by migration of a X hazardous substance in ground water? A. If yes, identify the well(s). 1631 dents on site and adjacent to site 8. If yes, how many people are served by the threatened well(s)? appiox. 2. Is there a high possibility of a threat to any of the following by hazardous substance migration in surface water? A. Drinking water intake 8. Fishery C. Sensitive environment (wetland, critical habitet, others) O. If yes, identify the target(s). Rancocas C is there a high possibility of an area of surficial contamination within 200 feet of any residence, school, or daycare facility? If yes, identify the property(ies) and estimate the associated population(s). 4. Are there public health concerns at this site that are not addressed by PA scoring considerations? If yes, explain: